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Abstract  

In a Laue diffraction pattern, 10-20% of the spots result 
from the exact superposition of two or more reflections 
that are 'harmonics'; a high proportion of these are low- 
resolution reflections. For the solution of large or difficult 
structural problems, the intensities of the remaining 80- 
90% of the reflections, measurable as singles, may not be 
sufficient and thus the evaluation of the intensities of the 
components of the multiple spots is important. A new 
method for this deconvolution is presented that is based 
on maximizing the entropy of the Patterson function 
subject to the constraints imposed by the observed 
intensities of single and overlapping reflections. This 
method does not require data redundancy and therefore is 
of particular interest for time-resolved studies on a short 
time scale. A new computer program (ME) was 
implemented and tested with Laue diffraction data from 
hen egg white lysozyme. The R factor between the 
deconvoluted reflection intensities from Laue multiple 
spots and observed intensities from monochromatic data 
was 0.116. 

I. Introduction 

Laue diffraction pattems, particularly those recorded with 
synchrotron radiation, have been increasingly used in 
recent years for the measurement of diffraction intensities 
(Helliwell, Habash, Cruickshank, Harding, Greenhough, 
Campbell, Clifton, Elder, Machin, Papiz & Zurek, 1989; 
Smith Temple & Moffat, 1987; Bartunik, Bartsch & 
Huang, 1992) and for time-resolved studies of crystal 
structures (Schlichting et al., 1990; Johnson & Hajdu, 
1990; Szebenyi, Bilderback, LeGrand, Moffat, 
Schildkamp, Smith Temple & Teng, 1992; Singer, 
Smalas, Carty, Mangel & Sweet, 1993). Usually, 80- 
90% of the sPOtS in a single Laue diffraction correspond 
to single reflections, each with its values of hkl and 
associated d (plane spacing) and ~., which we describe as 
singles. The remaining 10-20% of the spots are doubles, 
triples or higher multiples. If a crystal contains a plane of 
spacing d, then the spacings d/2, d/3 or, in general, d/j 
may also occur, where j is any positive integer. Bragg's 
law is simultaneously satisfied by the sets of values (d, ~.), 
(d/2, ,k/2), . . . ,  (d/j, ~./j),... and the diffraction spots 
are exactly superposed. Thus, measurement of the spot 
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intensity does not directly give the reflection intensity. 
Either a procedure must be devised to 'deconvolute' the 
observed intensities to give the individual reflection F 
values or the incomplete diffraction data set made up 
from the singles only must be used. Cruickshank, 
Helliwell & Moffat (1987) have examined the numbers 
of these multiples ('energy-overlapping' reflections) and 
their dependence o n  dmin, ~-min and ~,m~. For example, 
when/~-min ~ 0.25, ~'max ~ 2.5 A and dmi n - -  1.0 A, 16% 
of the reflections occur as multiples in the Laue 
diffraction pattern of a crystal with a fairly large unit 
cell and in a general orientation. Moreover, the reflec- 
tions that cannot be straightforwardly measured as 
singles are not randomly distributed in reciprocal space 
(Cruickshank et al., 1987); a high proportion of them are 
low-order reflections, axial reflections and reflections in 
special planes (hk0, hhl etc.). The absence of these 
reflections can be a serious drawback if the data are to be 
used for structure solution, for example using direct 
methods. In protein crystallography, the absence of low- 
order reflections has been shown to give electron-density 
maps that have poor connectivity (Duke, Hadfield, 
Walters, Wakatsuki, Bryan & Johnson, 1992). For 
reasons such as these, there has been increasing interest 
in methods to deconvolute reflection intensities of spots 
that are multiples. Helliwell et al. (1989) gave the first 
method using the intensities of spots on successive films 
in a film pack and the variation of film absorption with ~. 
(program UNSCRAM). In a second method, when 
multiple spots have been recorded with redundancy, the 
different components of a spot may be deconvoluted at 
the wavelength-normalization stage (Campbell & Hao, 
1993). A test on hen egg-white lysozyme showed that the 
multiples deconvoluted by this method did indeed 
contribute usefully to the continuity of the maps, owing 
to the improved completeness of the data (Campbell, 
Deacon, Habash, Helliwell, McSweeney, Hao, Raflery & 
Snell, 1994). Ren & Moffat (1995) presented a method 
similar in principle but using a different algorithm and 
obtained good-quality deconvoluted reflections. A third 
method that does not depend on the recording of data on 
multifilm packs or redundancy of the data was described 
by Hao, Campbell, Harding & Helliwell (1993); it uses 
relationships between structure-factor magnitudes like 
those that are used in direct methods. Program DECONV 
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by Hao, Harding & Campbell (1995a) is similar in 
principle to the third, but uses instead a real-space 
modification of the Patterson function. It avoids the 
difficulty in the third method of choosing a 'B factor' for 
the normalization of structure factors and has the 
advantage that the values for the deconvoluted intensities 
are improved by iterations of the procedure. A fourth 
method was presented by Bourenkov, Popov & Bartunik 
(1996), which is based on the Bayesian approach and 
Wilson statistics; the contrast in electron-density maps 
was improved significantly after the inclusion of the 
multiple reflections deconvoluted by this method. 

In this paper, we demonstrate that the maximum- 
entropy technique can be used to evaluate individual 
reflection intensities from Laue multiple spots. The 
power of the maximum-entropy principle (Jaynes, 
1979) is that it yields a most probable solution consistent 
with experimental observations (i.e. the constraints) 
imposed on the solution (David, 1987). The technique 
has been used in various areas including radio astronomy 
and crystallography. In crystallography, it has been 
applied to solve the phase problem (Collins, 1982; 
Wilkins, 1983; Bricogne, 1984; Navaza, 1985; Bricogne, 
1991; Prince, 1993). Bricogne (1984) gave a compre- 
hensive review of the maximum-entropy method cover- 
ing aspects from the mathematical foundation to practical 
solutions. David (1987, 1990) proposed a maximum- 
entropy method for deconvoluting overlapped intensities 
in a powder diffraction environment. Furthermore, 
Bricogne (1991) discussed the problem of decomposing 
Laue data in a maximum-entropy environment. 

2. Mathematical analysis and implementation 

In the present context, the function to be maximized is 
the 'Patterson entropy' 

S - - )--~p(r) ln[p(r)/p0(r)], (1) 
r 

where the summation is taken over the entire unit cell, 
p(r) and po(r) are the Patterson function and its initial 
value, respectively. For each multiple spot, a constraint 
imposed upon the Patterson entropy is 

Y~g(~.j) )-~p(r)cos(2rrhj. r) = lobs({hj}), (2) 
j r 

where g(~.j) is the wavelength-normalization function at 
wavelength ~.j and lobs is the measured intensity of the 
multiple spot. 

It was shown by Jaynes (1979) that maximizing an 
entropy function under constraints is equivalent to 
finding the unconstrained minimum of its dual function. 
The dual function is defined by 

¢(x) - - ~ p ( r )  ln[p(r)/p0(r)] 
r 

+ Y~Xlhsl ~.  gO-j) Y~p(r)cos(2rrhj. r), (3) 
{hi} ./ r 

x is a vector of parameters that is related to the Lagrange 
multipliers. When ~(x) reaches its minimum, the first 
derivative of ~(x) should be zero, so that 

O~(x)/Op(r)  = - lnp(r) - 1 - lnp0(r ) 

+ )--~ Xthjl ~. g(;~j)cos(2rrhj, r) 
{h)} j 

= 0  (4) 

and then 

P(r) = p°(r)exPr~ X~h'~ ~g(~')c°s(2Jrhj " r)] J (5) 

The problem now is to find the Lagrange multipliers 
using equations (2) and (5). We have adopted a quasi- 
Newton algorithm (Prince, 1993) to solve these non- 
linear equations. The mathematical process is described 
as follows: 

(i) Calculate initial values of Patterson function po(r) 
using only single reflections via fast Fourier transform 
(FFT). 

(ii) Calculate intensities for the components of each 
multiple spot via inverse FFT: 

/map(h) = y-~p(r) cos(2Jrh • r). (6) 
r 

(iii) Calculate deviation of the Lagrange multipliers 
Ax: 

Ax = AI .  n(x)  -1, (7) 

where Ax and AI are both vectors, the dimension being 
the number of multiple spots. For each multiple spot, 

A I  : y~.g()~j)Imap(hj)- Iobs({hj}). (8) 
J 

H(x) is the Hessian matrix. A typical element of H(x) is 

Hla(x) = ~g(Xj)  ~g(~,;) 
j i 

× ~p(r)cos(2zrhi, k .r)cos(2rrhj, t- r), (9) 
r 

where hi,, is the ith component of the kth multiple spot. 
Since 

cos(2rrhi.,, r)cos(2n'hj./, r) 

--2-- ! {cos[2rr(hi., + hi.l) • r] + cos[2zr(hi., - hi.l) • r]}, 

(10) 

equation (9) reduces to 

Hk/(X) = ½ )--~ g()~i) ~_,g(~'i)[Imap(hi,k + hi.l) 
j i 

+ In~p(h/, k - hj,t)]. (11) 

As the diagonal elements Hk,(x) are much larger than the 
off-diagonal ones, the diagonal approximation (steepest 
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descents) is appropriate and this is how the computer 
program is implemented. 

(iv) Compute the new Lagrange multipliers 

Xn+l-=Xn-Jt-Ax. (12) 

(v) Compute a new Patterson map using equation (5). 
(vi) Repeat from step (ii) until a pre-set criterion is 

met. In the following test, the criterion was that the 
fractional intensity difference of the single reflections 
between input and output was _< 0.03. 

Combined standard uncertainties for deconvoluted 
multiples are derived from the division of (r(Iobs), 

evaluated from experimental measurements in an inte- 
gration program, by g(~.j). 

A flow chart of a program, ME, written to implement 
the above procedure, is shown in Fig. 1. To implement a 
maximum-entropy program, a few practical points need 
to be addressed: 

(a) Good initial values are essential for the procedure 
to converge properly. Fortunately, in a Laue pattern, there 
are a large number of single reflections with accurately 
measured intensities. The initial Patterson map is 
calculated using those intensities. In the subsequent 
cycles, deconvoluted multiples are added to the singles to 
calculate new Patterson maps. 

1 

1 ] 

II 
I 

XR+ t = X= + AX [ 

mmlmte Pattemm from/~t 
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ym 
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Ax - M .  H ( x )  -t 

Fig. 1. Flow chart of the program for deconvoluting 
Laue multiple reflections using the maximum- 
entropy method. 
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(b) The scale factor of Patterson should be adjusted to 
satisfy the constraint 

Y-~p(r) -- I(000), (13) 
r 

where the constant I(000) can be estimated from the 
chemical composition of the unit cell. 

(c) Since x appears in the exponential part of equation 
(5), any fluctuation in x could result in a large change in 
P(r). A damping factor cr (< 1) is introduced to smooth 
large changes and thus help the process converge. 

(d) The method does not require data redundancy, 
however multiple experimental measurements are treated 
as extra constraints. 

3. Test of the procedure 

A test of the method was carried out using Laue data 
collected from tetragonal hen egg-white lysozyme (space 
group P43212, a = 79.19, c = 38.02 A). Seven Laue 
diffraction images recorded by Professor J. R. Helliwell's 
group using a MAR image plate on Station 9.5 of the 
Daresbury Synchrotron Radiation Source (SRS) were 
used. The intensity data were processed and normalized 
using the LAUEGEN and LAUENORM programs of the 
Daresbury Laue Software Suite (Helliwell et al., 1989). 
The soft limits were estimated using the intensity 
histogram method (Hao, Harding & Campbell, 1995b) 
to be Zmin = 0.4, ~-max = 1.55 a n d  dmin = 1.9 A.  Intensity 
measurements for 17 125 singles in the wavelength range 
0.48-1.30 A yielded 5296 unique reflections with 

R =  Y-~ l l i - - l , I /EIm =0.067, (14) 
i t i  

where Ii represents the wavelength-normalized intensity 
and Im is the mean of two or more measurements of the 
same or symmetry-equivalent reflections. These reflec- 
tions were compared with high-quality monochromatic 
data (Young, Dewan, Nave & Tilton, 1993). The R factor 
as defined in (14) between the Laue singles data and the 
reference monochromatic data was 0.061. 

All intensities of the multiple spots were then 
processed by the maximum-entropy program ME. As a 
result of the deconvolution process, 1442 unique 
reflections were obtained. The R factor between the 
deconvoluted multiples and monochromatic data was 
0.116 for the 1257 reflections in common. Details are 
given in Table 1. There is a strong resolution dependence 
of the accuracy of measurements because of the nature of 
the normalization function g(Z). At high resolution (low 
wavelength) and very low resolution (long wavelength), 
the scale factor to be applied to the data, 1/g(Z), is large 
and changes rapidly with Z, resulting in large errors in 
these regions. It is also clear that very weak reflections 
have large errors. 

To see how the deconvoluted multiples could improve 
connectivity of the electron-density map, one section of 

Table 1. Analysis of  the deconvoluted multiple reflections 
obtained by the maximum-entropy method as a function 
of  resolution and intensities; the R factor as defined in 
equation (14) is calculated against monochromatic data 

Resolution range 

6.83-7.54 
6.13-6.83 
5.43-6.13 
4.73-5.43 
4.03-4.73 
3.32-4.03 
2.62-3.32 
1.92-2.62 

All 

Intensity range 

>30647 
22537-30647 
15672-22537 
10050-15672 
5672-10050 
2538-5672 
647-2538 

<647 
All 

(A) No. of ~flections R 

16 0.165 
47 0.075 
76 0.080 

134 0.097 
215 0.060 
166 0.129 
208 0.197 
395 0.287 

1257 0.116 

No. of ~flecfions R 

7 0.046 
11 0.046 
28 0.092 
81 0.078 

153 0.098 
269 0.111 
461 0.216 
247 0.476 

1257 0.116 

Table 2. Analysis of  the deconvoluted multiple reflections 
obtained by the direct method (Hao, Harding & 
Campbell, 1995a) as a function of resolution and 
intensities; the R factor as defined in equation (14) is 

calculated against monochromatic data 

Resolution range (A) No. of reflections R 

6.83-7.54 16 0.210 
6.13-6.83 46 0.233 
5.43-6.13 76 0.217 
4.73-5.43 134 0.210 
4.03-4.73 214 0.183 
3.32-4.03 166 0.209 
2.62-3.32 204 0.294 
1.92-2.62 386 0.429 

All 1242 0.220 

Intensity range No. of reflections R 

>15391 10 0.210 
11385-15391 16 0.163 
7981-11385 43 0.193 
5181-7981 100 0.211 
2983-5181 180 0.196 
1388-2983 269 0.236 
396-1388 333 0.300 

<396 291 0.497 
All 1242 0.220 

the map superimposed on the refined model of Young, 
Dewan, Nave & Tilton (1993) is shown in Fig. 2. The 
discontinuous electron densities near Ca 9 of the 2Fo-Fc 
map calculated using singles only (Fig. 2a) become 
continuous when deconvoluted multiples are added in the 
calculation (Fig. 2b). 

Other deconvolution methods were also tested with the 
same Laue data. The direct-methods program DECONV 
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(Hao, Harding & Campbell, 1995a) yielded 1417 unique 
reflections from the multiple spots but the R factor of 
0.220 (see Table 2) against the monochromatic data was 
much higher than the maximum-entropy result. The 
wavelength-normalization-curve method (Campbell & 
Hao, 1993) produced only 696 unique reflections as 
many multiple spots were rejected due to insufficient 
number of equations, i.e. lack of data redundancy. 
However, the R factor of 0.089 between the deconvoluted 
reflections and monochromatic data (see Table 3) is 
slightly better than that from the maximum-entropy 
method. 

Table 3. Analysis of  the deconvoluted multiple reflections 
obtained by the wavelength-normalization-curve method 
(Campbell & Hao, 1993) as a function of  resolution and 
intensities; the R factor as defined in equation (14) is 

calculated against monochromatic data 

Resolution range (A) No. ofreflecfions R 

6.83-7.54 11 0.050 
6.13--6.83 32 0.042 
5.43-6.13 48 0.065 
4.73-5.43 73 0.047 
4.03-4.73 103 0.052 
3.32-4.03 74 0.076 
2.62-3.32 109 0.138 
1.92-2.62 178 0.300 

All 628 0.089 

Intensity range No. ofreflections R 

>9224 9 0.044 
6812-9224 11 0.129 
4766-6812 33 0.057 
3083-4766 45 0.056 
1766-3083 102 0.090 
813-1766 140 0.097 
226-813 188 0.170 

<226 100 0.337 
All 628 0.089 

(a) 

4. Concluding remarks 

Evaluation of reflection intensities for the components of 
the multiple Laue diffraction spots using the maximum- 
entropy method has been achieved without the require- 
ment of data redundancy. The deconvolution has been 
most successful with the low-resolution reflections. The 
inclusion of these deconvoluted reflections increases the 
completeness of the Laue data and therefore improves the 
connectivity of the electron-density map. The test results 
have shown substantial improvement in data quality over 
the previously published direct method (Hao, Harding & 
Campbell, 1995a). The maximum-entropy method com- 
plements the wavelength-normalization-curve method 
(Campbell & Hao, 1993; Ren & Moffat, 1995), which 
yields good-quality data but requires high data redun- 
dancy. 
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(b) 

Fig. 2. A region (residues 8, 9 and 10) of the 2Fo-Fc electron-density 
map calculated using (a) single reflections only, (b) singles + 
deconvoluted multiples. The contour level is la. The connectivity 
has been improved significantly by the inclusion of the multiples. 

References 

Bartunik, H. D., Bartsch, H. H. & Huang, Q. (1992). Acta 
Cryst. A48, 180-188. 

Bourenkov, G. P., Popov, A. N. & Bartunik, H. D. (1996). A cta 
Cryst. A52, 797-811. 



648 MULTIPLE LAUE DIFFRACTION SPOTS 

Bricogne, G. (1984). Acta Cryst. A40, 410--445. 
Bricogne, G. (1991). Acta Cryst. A47, 803-829. 
Campbell, J. W., Deacon, A., Habash, J., Helliwell, J. R., 

McSweeney, S., Hao, Q., Rattery, J. & Snell, E. (1994). Bull. 
Mater Sci. 17(1), 1-18. 

Campbell, J. W. & Hao, Q. (1993). Acta Cryst. A49, 889-893. 
Collins, D. M. (1982). Nature (London), 298, 49-51. 
Cruickshank, D. W J., Helliwell, J. R. & Moffat, K. (1987). 

Acta Cryst. A43, 656--674. 
David, W. I. E (1987). J. Appl. Cryst. 20, 316-319. 
David, W. I. F. (1990). Nature (London), 346, 731-734. 
Duke, E. M. H., Hadfield, A., Waiters, S., Wakatsuki, S., Bryan, 

R. K. & Johnson, L. N. (1992). Philos. Trans. R. Soc. London 
Set A, 340, 255-261. 

Hao, Q., Campbell, J. W., Harding, M. M. & Helliwell, J. R. 
(1993). Acta Cryst. A49, 528-531. 

Hao, Q., Harding, M. M. & Campbell, J. W. (1995a). J 
Synchrotron Rad. 2, 27-30. 

Hao, Q., Harding, M. M. & Campbell, J. W (1995b). J. Appl. 
Cryst. 28, 447-450. 

Helliwell, J. R., Habash, J., Cruickshank, D. W J., Harding, 
M. M., Greenhough, T. J., Campbell, J. W., Clitton, I. J., 
Elder, M., Machin, P. A., Papiz, M. Z. & Zurek, S. (1989). J. 
Appl. Cryst. 22, 483-497. 

Jaynes, E. T. (1979). The Maximum Entropy Formalism, pp. 
15-118. Cambridge, MA: MIT Press. 

Johnson, L. N. & Hajdu, J. (1990). Synchrotron Radiation and 
Biophysics, edited by S. S. Hasnain, ch. 6. Chichester: Ellis 
Horwood. 

Navaza, J. (1985). Acta Cryst. A41,232-244. 
Prince, E. (1993). Acta Cryst. D49, 61--65. 
Ren, Z. & Moffat, K. (1995). J. Appl. Cryst. 28, 482-493. 
Schlichting, I., Almo, S. C., Rapp, G., Wilson, K., Petratos, K., 

Lenffer, A., Wittinghofer, A., Kabsch, W., Pai, E. E., Petsko, 
G. A. & Goody, R. S. (1990). Nature (London), 345, 
309-315. 

Singer, P. T., Smalas, A., Catty, R. P., Mangel, W E & Sweet, R. 
M. (1993). Science, 259, 669-673. 

Smith Temple, B. & Moffat, K. (1987). Computational Aspects 
of  Protein Crystal Data Analysis, edited by J. R. Helliwell, 
P. A. Machin & M. Z. Papiz, pp. 84-89. SERC Daresbury 
Laboratory, Warrington, England. 

Szebenyi, D. M. E., Bilderback, D. H., LeGrand, A., Moffat, K., 
Schildkamp, W., Smith Temple, B. & Teng, T.-Y. (1992). J 
Appl. Cryst. 25, 414-423. 

Wilkins, S. W (1983). Acta Cryst. A39, 892-896. 
Young, A. C. M., Dewan, J. C., Nave, C. & Tilton, R. E (1993). 

J Appl. Cryst. 26, 309-319. 


